A complete and an incomplete algorithm for automated guided vehicle scheduling in container terminals
نویسندگان
چکیده
In this paper, a scheduling problem for automated guided vehicles in container terminals is defined and formulated as a Minimum Cost Flow model. This problem is then solved by a novel algorithm, NSA+, which extended the standard Network Simplex Algorithm (NSA). Like NSA, NSA+ is a complete algorithm, which means that it guarantees optimality of the solution if it finds one within the time available. To complement NSA+, an incomplete algorithm Greedy Vehicle Search (GVS) is designed and implemented. The NSA+ and GVS are compared and contrasted to evaluate their relative strength and weakness. With polynomial time complexity, NSA+ can be used to solve very large problems, as verified in our experiments. Should the problem be too large for NSA+, or the time available for computation is too short (as it would be in dynamic scheduling), GVS complements NSA+. © 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Optimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals
The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...
متن کاملAn Efficient Extension of Network Simplex Algorithm
In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...
متن کاملScheduling Single-Load and Multi-Load AGVs in Container Terminals
In this paper, three solutions for scheduling problem of the Single-Load and Multi-Load Automated Guided Vehicles (AGVs) in Container Terminals are proposed. The problem is formulated as Constraint Satisfaction and Optimization. When capacity of the vehicles is one container, the problem is a minimum cost flow model. This model is solved by the highest performance Algorithm, i.e. Network Simple...
متن کاملScheduling in Container Terminals using Network Simplex Algorithm
In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by the Network Simplex Algorithm (NSA). The algorithm is based on graph model and their performances are at least 100 times faster than traditional si...
متن کاملYard crane scheduling in port container terminals using genetic algorithm
Yard crane is an important resource in container terminals. Efficient utilization of the yard crane significantly improves the productivity and the profitability of the container terminal. This paper presents a mixed integer programming model for the yard crane scheduling problem with non- interference constraint that is NPHARD in nature. In other words, one of the most important constraints in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 61 شماره
صفحات -
تاریخ انتشار 2011